Gravix Layer x PydanticAI Integration
Use Gravix Layer's LLMs with PydanticAI for structured output validation and schema-driven AI applications.
What You'll Learn
- How to validate LLM outputs with Pydantic schemas
- How to use Gravix Layer's API for structured data
- Example: Enforcing output formats for data extraction
1. Install Required Packages
pip install pydantic-ai python-dotenv
2. Configure Your API Key
Add your API key to a .env
file:
GRAVIXLAYER_API_KEY=your_api_key_here
3. Using PydanticAI with Gravix Layer
from pydantic_ai import Agent, StructuredDict
import os
from dotenv import load_dotenv
load_dotenv()
api_key = os.environ.get("GRAVIXLAYER_API_KEY")
agent = Agent(
model="meta-llama/llama-3.1-8b-instruct",
output_type=StructuredDict({
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer"}
},
"required": ["name", "age"]
}),
model_settings={
"base_url": "https://api.gravixlayer.com/v1/inference",
"api_key": api_key
}
)
result = agent.run_sync("Extract name and age from: John Doe, 34 years old.")
print(result.output)
Expected Output:
{'name': 'John Doe', 'age': 34}
Tips:
- The
model_settings
argument must include the correctbase_url
andapi_key
for Gravix Layer.
PydanticAI lets you enforce structure and validation on LLM outputs. Gravix Layer provides the inference power for any schema-driven task.