Skip to main content

Gravix Layer x CrewAI Integration

Integrate Gravix Layer's LLMs with CrewAI to build collaborative, multi-agent AI workflows for automation, research, and more.

What You'll Learn

  • Connect CrewAI agents to Gravix Layer's API
  • Use OpenAI-compatible endpoints for agent communication
  • Example: Multi-agent workflow for summarization and analysis

1. Install Required Packages

pip install crewai openai python-dotenv

2. Configure Your API Key

Add your API key to a .env file:

GRAVIXLAYER_API_KEY=your_api_key_here

3. Example: Multi-Agent Workflow

from openai import OpenAI
import os
from dotenv import load_dotenv

load_dotenv()
api_key = os.environ.get("GRAVIXLAYER_API_KEY")

llm = OpenAI(
api_key=api_key,
base_url="https://api.gravixlayer.com/v1/inference"
)

agents = [
{"role": "Summarizer", "task": "Summarize this: AI is transforming industries..."},
{"role": "Industry Analyst", "task": "List three industries most impacted by AI."},
{"role": "Healthcare Researcher", "task": "Suggest a research question about AI in healthcare."}
]

responses = []
for agent in agents:
response = llm.chat.completions.create(
model="meta-llama/llama-3.1-8b-instruct",
messages=[
{"role": "system", "content": f"You are a helpful assistant with the role: {agent['role']}"},
{"role": "user", "content": agent["task"]}
]
)
responses.append((agent["role"], response.choices[0].message.content))

for i, (role, r) in enumerate(responses):
print(f"Agent {i+1} ({role}) response: {r}\n")

Expected Output:

Agent 1 (Summarizer) response: ...
Agent 2 (Industry Analyst) response: ...
Agent 3 (Healthcare Researcher) response: ...

Tips:

  • Assign clear roles and tasks to each agent for best results.
  • Use the system prompt to guide agent behavior.

For more details, see the CrewAI documentation.