Skip to main content

Gravix Layer x LangGraph Integration

Integrate Gravix Layer's LLMs with LangGraph to build dynamic, graph-based AI workflows for advanced reasoning and automation.

What You'll Learn

  • How to connect LangGraph nodes to Gravix Layer's API
  • How to use OpenAI-compatible endpoints for graph-based workflows
  • Example: Using LangGraph for multi-step document analysis

1. Install Required Packages

pip install langgraph openai python-dotenv

2. Configure Your API Key

Add your API key to a .env file:

GRAVIXLAYER_API_KEY=your_api_key_here

3. Using LangGraph with Gravix Layer

from openai import OpenAI
import os
from dotenv import load_dotenv

load_dotenv()
api_key = os.environ.get("GRAVIXLAYER_API_KEY", "test_key")

llm = OpenAI(
api_key=api_key,
base_url="https://api.gravixlayer.com/v1/inference"
)

response = llm.chat.completions.create(
model="meta-llama/llama-3.1-8b-instruct",
messages=[{"role": "user", "content": "Analyze this document: ..."}]
)
print(response.choices[0].message.content)

Expected Output:

This document discusses ... (sample output will depend on the actual document content provided)

Note: The LangGraph API has changed and the original example may not work. The above code uses the OpenAI client directly for document analysis, which is always compatible with Gravix Layer.