Skip to main content

Gravix Layer x MongoDB Integration

Integrate Gravix Layer's LLMs with MongoDB to store, query, and analyze AI-generated data in a scalable NoSQL database.

What You'll Learn

  • How to save LLM outputs to MongoDB
  • How to query and analyze AI-generated data
  • Example: Storing chat completions in MongoDB

1. Install Required Packages

pip install pymongo openai python-dotenv

2. Configure Your API Key

Add your API key to a .env file:

GRAVIXLAYER_API_KEY=your_api_key_here

3. Using MongoDB with Gravix Layer

from pymongo import MongoClient
from openai import OpenAI
import os
from dotenv import load_dotenv

load_dotenv()
api_key = os.environ.get("GRAVIXLAYER_API_KEY", "test_key")

llm = OpenAI(
api_key=api_key,
base_url="https://api.gravixlayer.com/v1/inference"
)

client = MongoClient("mongodb://localhost:27017/")
db = client["ai_data"]
collection = db["completions"]

response = llm.chat.completions.create(
model="meta-llama/llama-3.1-8b-instruct",
messages=[{"role": "user", "content": "Summarize this: AI is changing the world."}]
)

collection.insert_one({"prompt": "Summarize this: AI is changing the world.", "response": response.choices[0].message.content})
print("Saved to MongoDB!")

Expected Output:

Saved to MongoDB!

If MongoDB is not running, you may see:

pymongo.errors.ServerSelectionTimeoutError: localhost:27017: [Errno 61] Connection refused ...

Sample Output:

pymongo.errors.ServerSelectionTimeoutError: localhost:27017: [Errno 61] Connection refused ...

Note: You must have a running MongoDB server on localhost:27017 for this code to work.

MongoDB lets you store and analyze AI-generated data at scale. Gravix Layer provides the LLM power for any data-driven application.