Skip to main content
Seamlessly migrate from Mem0 to GravixLayer with full API compatibility and enhanced features for memory management.

Mem0 Compatibility

GravixLayer Memory provides full API compatibility with Mem0 while adding enhanced features like dynamic configuration and multi-index support.
Default Configuration: Uses baai/bge-large-en-v1.5 embedding model, gravixlayer_memories index, AWS us-east-1. Available models: baai/bge-large-en-v1.5, microsoft/multilingual-e5-large, nomic-ai/nomic-embed-text-v1.5

Basic Mem0 Compatibility

  • Python SDK
  • JavaScript SDK
from gravixlayer import GravixLayer

client = GravixLayer()
memory = client.memory

# Add memory (same as Mem0)
result = memory.add("I love pizza", user_id="alice")
print(f"Added: {result['results'][0]['memory']}")

# Search memories (same as Mem0)
results = memory.search("pizza", user_id="alice")
print(f"Found {len(results['results'])} memories")

# Get all memories (same as Mem0)
all_memories = memory.get_all(user_id="alice")
print(f"Total: {len(all_memories['results'])} memories")

# Update memory (same as Mem0)
memory_id = result['results'][0]['id']
memory.update(memory_id, "alice", "I absolutely love pizza")

# Delete memory (same as Mem0)
memory.delete(memory_id, "alice")

Enhanced Features

  • Python SDK
  • JavaScript SDK
# List available indexes
indexes = memory.list_available_indexes()
print(f"Available indexes: {indexes}")

# Switch to different index
memory.switch_index("user_preferences")
memory.add("User likes large fonts", user_id="alice")

# Switch configuration for multilingual support
memory.switch_configuration(
    embedding_model="microsoft/multilingual-e5-large",
    index_name="multilingual_memories"
)

# Add multilingual memories
memory.add("El usuario prefiere pizza", user_id="alice")
memory.add("L'utilisateur aime le café", user_id="alice")

# Search works across languages
results = memory.search("food preferences", user_id="alice")
print(f"Found: {len(results['results'])} memories")

Migration from Mem0

  • Before (Mem0)
  • After (GravixLayer)
from mem0 import Memory

memory = Memory()
result = memory.add("I love pizza", user_id="alice")
results = memory.search("food", user_id="alice")

Key Features

Core Methods

  • add() - Add memories
  • search() - Search memories
  • get_all() - List all memories
  • update() - Update memories
  • delete() - Delete memories

Enhanced Methods

  • list_available_indexes() - List available indexes
  • Per-operation index_name parameter for all methods

Response Format

{
  "results": [
    {
      "id": "memory-id",
      "memory": "memory content",
      "metadata": {},
      "created_at": "timestamp"
    }
  ]
}

Parameters

  • user_id - User identifier (required)
  • messages - Text or conversation array
  • metadata - Additional context (optional)
  • infer - Enable AI inference (optional)
  • index_name - Target specific index (optional, new)
I